
Implementing Kaltofen and Yagati’s fast transposed
Vandermonde solver

HYUKHO KWON and MICHAEL MONAGAN∗, Department of Mathematics, Simon Fraser Univer-

sity, Canada

CCS Concepts: • Computing methodologies→ Algebraic algorithms.

Additional Key Words and Phrases: Transposed Vandermonde Systems, Fast Algorithms

Recommended Reference Format:
Hyukho Kwon and Michael Monagan. 2024. Implementing Kaltofen and Yagati’s fast transposed Vandermonde

solver. 1, 1 (November 2024), 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
We present a C implementation of Kaltofen and Yagati’s fast transposed Vandermonde solver

from [6] over the finite field Z𝑝 for 𝑝 a prime with at most 63 bits. For comparison, we have also

implemented Kaltofen and Yagati’s algorithm in Maple and Zippel’s algorithm from [9] in C. Our

goal is to determine how much faster an optimized C implementation is than an implementation

that just uses the fast polynomial multiplications and divisions in Z𝑝[𝑥] provided by the system

(Maple).

The motivation for our work is the black-box multivariate polynomial factorization algorithm of

Chen and Monagan [3] which needs to solve many transposed Vandermonde systems. In [3] the

authors factor the determinant of the 16 by 16 symmetric Töplitz matrix. About 3/4 of the total

factorization time is spent solving transposed Vandermonde systems, the largest of which is 127,690

by 127,690.

Let 𝐹 be a field and 𝑎(𝑥) =
∑𝑛

𝑗=1 𝑎 𝑗𝑥
𝑒 𝑗
be an unknown polynomial in 𝐹 [𝑥]with unknown coefficients

𝑎 𝑗 ∈ 𝐹 and known exponents 𝑒 𝑗 ∈ N. For example suppose

𝑎(𝑥) = 3𝑥1 + 5𝑥4 + 7𝑥11 + 9𝑥13.

To interpolate 𝑎(𝑥) of degree 𝑑 , in general we need 𝑑 + 1 values of 𝑎(𝑥). But if 𝑎(𝑥) is sparse, like our

example, we only need 𝑛 values of 𝑎(𝑥) where 𝑛 is the number of terms of 𝑎(𝑥), 4 in our example.

For 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ 𝐹 , suppose we have computed 𝑏𝑖 = 𝑎(𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑛 and we want to find the

coefficients 𝑎 𝑗 of 𝑎(𝑥). Suppose also we use a geometric point sequence 𝑣𝑖 = 𝛼𝑖−1 for some 𝛼 ∈ 𝐹
such that 𝛼𝑖 ̸= 𝛼𝑘 for all 𝑖 ̸= 𝑘 . Then

𝑏𝑖 = 𝑎(𝑣𝑖) =
𝑛∑︁
𝑗=1

𝑎 𝑗 (𝛼
𝑖−1

)
𝑒 𝑗

=

𝑛∑︁
𝑗=1

𝑎 𝑗 (𝛼
𝑒 𝑗
)
𝑖−1

for 1 ≤ 𝑖 ≤ 𝑛.

If we let 𝑢 𝑗 = 𝛼𝑒 𝑗
for 1 ≤ 𝑗 ≤ 𝑛 then we have

𝑏𝑖 =
𝑛∑︁
𝑗=1

𝑎 𝑗𝑢
𝑖−1
𝑗 .

Authors’ address: Hyukho Kwon, hyukhok@sfu.ca; Michael Monagan, mmonagan@sfu.ca, Department of Mathematics,

Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A1A6.

Permission to make digital or hard copies of all or part of this work for any use is granted without fee, provided that copies

bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored.

© 2024 Maple Transactions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Hyukho Kwon and Michael Monagan

In matrix-vector form, we have

1 1 1 · · · 1

𝑢1 𝑢2 𝑢3 · · · 𝑢𝑛
𝑢2

1
𝑢2

2
𝑢2

3
· · · 𝑢2

𝑛

.

.

.

.

.

.

.

.

.

.

.

.

𝑢𝑛−1
1

𝑢𝑛−1
2

𝑢𝑛−1
3

· · · 𝑢𝑛−1𝑛

𝑎1
𝑎2
𝑎3
.
.
.

𝑎𝑛

=

𝑏1
𝑏2
𝑏3
.
.
.

𝑏𝑛

𝑈 a b

. (1)

The matrix𝑈 is called a transposed Vandermonde matrix and the linear system𝑈 a = b is called a

transposed Vandermonde system.

Kaltofen and Yagati’s algorithm [6] solves𝑈 a = b using fast multiplication. If 𝑛 is the dimension of

𝑈 and𝑀(𝑛) is the number of field operations for multiplying two polynomials of degree 𝑛 in 𝐹 [𝑥],

Kaltofen and Yagati’s algorithm does 𝑂(𝑀(𝑛) log𝑛) arithmetic operations in 𝐹 . Table 1 summarizes

three methods for solving𝑈 a = b.

Methods # ops in 𝐹 space

Gaussian Elimination 𝑂(𝑛3) 𝑂(𝑛2)

Zippel’s method [9] 𝑂(𝑛2) 𝑂(𝑛)

Kaltofen & Yagati’s method [6] 𝑂(𝑀(𝑛) log𝑛) 𝑂(𝑛 log𝑛)

Table 1. Number of field operations for solving 𝑛 by 𝑛 transposed Vandermonde systems

We note that in some applications, for example, the GCD algorithm of Hu and Monagan in [5], one

needs random evaluation points for 𝑣𝑖 as 𝑣1 = 𝛼0
= 1 may cause a problem. To resolve this we may

instead use 𝑣𝑖 = 𝛼𝑖 for 1 ≤ 𝑖 ≤ 𝑛 so that 𝑣1 = 𝛼 . This leads to a shifted transposed Vandermonde

system 𝑈 ′a = b where 𝑈 ′𝑖, 𝑗 = 𝑢𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛. The matrix 𝑈 ′ factors as 𝑈 ′ = 𝑈𝐷

where 𝐷 is a diagonal matrix with 𝐷𝑖,𝑖 = 𝑢𝑖 . Thus to solve𝑈
′a = (𝑈𝐷)a = b, since a = 𝐷−1𝑈 −1b. We

first solve the unshifted transposed Vandermonde system𝑈 c = b for c then use a = 𝐷−1c.

2 Preliminaries
Kaltofen and Yagati’s algorithm assumes fast multiplication, fast multi-point evaluation and fast

division in 𝐹 [𝑥]. These algorithms are presented in [8] Chapter 8, 9 and 10. We summarize what we

have implemented for these for the prime field 𝐹 = Z𝑝 where 𝑝 is a 63 bit Fourier prime, a prime of

the form 𝑝 = 2
𝑘𝑠 + 1 for large 𝑘 . We will discuss the case when 𝑝 is a non-Fourier prime in Section 4.

2.1 Fast multiplication
The underlying FFT for Z𝑛𝑝 that we use is the in-place recursive FFT from Law and Monagan

[7] which does exactly
1

2
𝑛 log

2
𝑛 multiplications. For 𝜔 a primitive 𝑛th root of unity in Z𝑝 , it

precomputes the array𝑊 below of size 𝑛 of the powers of 𝜔 needed for all recursive calls.

𝑊 = 1 𝜔 𝜔2 · · · 𝜔𝑛/2−1
1 𝜔2 𝜔4 · · · 𝜔𝑛/2−2 · · · 1 0

There are two types of FFTs. The decimation in frequency FFT permutes the elements at its last

step. On the other hand, the decimation in time FFT permutes the elements in the beginning. The

permutation in the FFT is called the bit-reversal permutation. To multiply two polynomials of

degree at most 𝑛 in Z𝑝[𝑥], Law and Monagan use the decimation in frequency FFT for the two

forward transforms and the decimation in time FFT for the inverse transform so that the two

bit-reversal permutations cancel out and can be omitted from both FFTs.

, Vol. 1, No. 1, Article . Publication date: November 2024.

Implementing Kaltofen and Yagati’s fast transposed Vandermonde solver 3

Theorem 2.1. Fast multiplication does𝑀1(𝑛) = 9𝑛 log
2
𝑛 +𝑂(𝑛) arithmetic operations to multiply two

polynomials of degree at most 𝑛 in Z𝑝[𝑥].

In our implementation, when the degree of the product of two polynomials is less than 2
16

= 65536,

we use classical multiplication instead.

2.2 Fast division
Let 𝑓 , 𝑔 ∈ Z𝑝[𝑥] with deg(𝑔) = 𝑛 and deg(𝑓) < 2𝑛. The classical algorithm for 𝑓 divided by 𝑔 does

𝑂(𝑛2) arithmetic operations in Z𝑝 . Let 𝑔 =

∑𝑛
𝑖=0 𝑔𝑖𝑥

𝑖
and 𝑔 =

∑𝑛
𝑖=0 𝑔𝑛−𝑖𝑥

𝑖
denote the reciprocal

polynomial. The fast division algorithm [8] computes 𝑔−1 mod 𝑥𝑛 using a Newton iteration (see

Theorem 2.2 below) first.

Theorem 2.2. (Theorem 9.2 [8]) Assume ℎ =

∑𝑛
𝑖=0 ℎ𝑖𝑥

𝑖 ∈ Z𝑝[𝑥] and ℎ0 ̸= 0. Let 𝑦0 = ℎ−1
0

and
𝑦𝑖 = 2𝑦𝑖−1 − ℎ × 𝑦2𝑖−1 mod 𝑥2

𝑖

for 𝑖 ≥ 1. For all 𝑖 ≥ 0, ℎ · 𝑦𝑖 mod 𝑥2
𝑖

= 1.

Using Theorem 2.2, we can compute the inverse of 𝑔 in 3𝑀1(𝑛) + 𝑂(𝑛) arithmetic operations in

Z𝑝 [8]. We have implemented the middle product of Hanrot, Quercia, and Zimmermann [4] by

rewriting the equation in Theorem 2.2 such that

𝑦𝑖 = 2𝑦𝑖−1 − ℎ × 𝑦2𝑖−1 mod 𝑥2
𝑖

= 𝑦𝑖−1 + 𝑦𝑖−1 × (1 − ℎ × 𝑦𝑖−1) mod 𝑥2
𝑖

. (2)

Consider when 𝑖 = 𝑘 and let 𝑛 = 2
𝑘
. It follows that ℎ × 𝑦𝑘−1 mod 𝑥

𝑛
2 = 1. Then we have

(ℎ mod 𝑥𝑛) × 𝑦𝑘−1 mod 𝑥𝑛 = 1 +𝑚0𝑥
𝑛
2 + · · · +𝑚 𝑛

2
−1𝑥

𝑛−1
+ 𝑎0𝑥

𝑛
+ · · · + 𝑎 𝑛

2
−2𝑥

3𝑛
2
−2

mod 𝑥𝑛

= 1 +𝑚 × 𝑥 𝑛
2 + 𝑎 × 𝑥𝑛 mod 𝑥𝑛 = 1 +𝑚 × 𝑥 𝑛

2

where𝑚 =

∑𝑛
2
−1

𝑖=0
𝑚𝑖𝑥

𝑖
and 𝑎 =

∑𝑛
2
−2

𝑖=0
𝑎𝑖𝑥

𝑖
. The polynomial𝑚 is called the middle product. The main

improvement is that we can use an FFT of size 𝑛 instead of size 2𝑛 to compute ℎ × 𝑦𝑘−1 mod 𝑥𝑛 ,

and we can easily read off the coefficients of𝑚 and then

𝑦𝑘 = 𝑦𝑘−1 + 𝑦𝑘−1 × (−𝑚 × 𝑥
𝑛
2) mod 𝑥𝑛 .

Thus Hanrot, Quercia and Zimmermann’s method reduces the cost of computing 𝑔−1 from 3𝑀1(𝑛) +

𝑂(𝑛) to 2𝑀1(𝑛) +𝑂(𝑛) arithmetic operations in Z𝑝 . Notice that there are two multiplications by

𝑦𝑖−1 in Equation (2). We can also save one FFT by computing the FFT of 𝑦𝑘−1 once which reduces

the constant 2 to
5

3
. After computing 𝑔−1, fast division computes the quotient 𝑞 from 𝑞 = 𝑓 × 𝑔−1

mod 𝑥𝑛 then the remainder 𝑟 using 𝑟 = 𝑓 − 𝑔 × 𝑞. The total cost for the polynomial multiplications

in division becomes
11

3
𝑀1(𝑛) +𝑂(𝑛) arithmetic operations in Z𝑝 .

Theorem 2.3. Fast division in Z𝑝[𝑥] does at most 11

3
𝑀1(𝑛) +𝑂(𝑛) arithmetic operations.

In our implementation of fast division we use classical division for 𝑛 ≤ 512.

2.3 Fast multi-point evaluation
Let 𝑓 be a polynomial in Z𝑝[𝑥]with deg(𝑓) ≤ 𝑛− 1where 𝑛 = 2

𝑘
for some 𝑘 ≥ 0. Let 𝑢0, 𝑢1, . . . , 𝑢𝑛−1

be distinct elements in Z𝑝 . The multi-point evaluation problem is to compute 𝑓 (𝑢𝑖) for 0 ≤ 𝑖 ≤ 𝑛− 1.
Repeated usage of Horner’s method costs 𝑂(𝑛2) arithmetic operations in Z𝑝 .

In 1971, Borodin and Munro [2] introduced an𝑂(𝑀1(𝑛) log𝑛) algorithm. Their algorithm first builds

a product tree 𝑇 , a complete binary tree in which every leaf is a linear polynomial 𝑥 − 𝑢𝑖 for
0 ≤ 𝑖 ≤ 𝑛 − 1 and each parent node is the product of their two children so that the root node of𝑇 is

𝑇𝑘,0 =
∏𝑛−1

𝑖=0 (𝑥 − 𝑢𝑖). In Figure 1, we present the layout of a product tree.

, Vol. 1, No. 1, Article . Publication date: November 2024.

4 Hyukho Kwon and Michael Monagan

∏𝑛
𝑖=1(𝑥 − 𝑢𝑖)

𝑇𝑘,0∏𝑛
2

𝑖=1
(𝑥 − 𝑢𝑖)

𝑇𝑘−1,0
.
.
.

(𝑥 − 𝑢1)(𝑥 − 𝑢2)

𝑇1,0

𝑥 − 𝑢1
𝑇0,0

𝑥 − 𝑢2
𝑇0,1

.

.

.

(𝑥 − 𝑢3)(𝑥 − 𝑢4)

𝑇1,1

𝑥 − 𝑢3
𝑇0,2

𝑥 − 𝑢4
𝑇0,3

∏𝑛
𝑖=𝑛

2
+1
(𝑥 − 𝑢𝑖)

𝑇1,1

.

.

.

(𝑥 − 𝑢𝑛−3)(𝑥 − 𝑢𝑛−2)
𝑇
1,𝑛

2
−2

𝑥 − 𝑢𝑛−3
𝑇0,𝑛−4

𝑥 − 𝑢𝑛−2
𝑇0,𝑛−3

.

.

.

(𝑥 − 𝑢𝑛−1)(𝑥 − 𝑢𝑛)
𝑇
1,𝑛

2
−1

𝑥 − 𝑢𝑛−1
𝑇0,𝑛−2

𝑥 − 𝑢𝑛
𝑇0,𝑛−1

. . .

. . .

Fig. 1. The layout of a product tree

Each multiplication in the product tree is of two monic polynomials 𝑇𝑖, 𝑗 = 𝑥2
𝑖

+ 𝐴(𝑥) by 𝑇𝑖, 𝑗+1 =

𝑥2
𝑖

+ 𝐵(𝑥) which needs an FFT of size 4× 2𝑖 . Instead, by computing𝑇𝑖, 𝑗 × 𝐵(𝑥) and adding 𝑥2
𝑖

𝑇𝑖, 𝑗 we

can use an FFT of size 2 × 2𝑖 . Also, since all polynomials in 𝑇 are monic we only need to store 𝐴(𝑥)

and 𝐵(𝑥) which have size 2
𝑖
. The product tree can be stored in a one dimensional array using space

for 𝑛(1 + log
2
𝑛) elements of Z𝑝 .

Theorem 2.4. Building a product tree (BuPT) in Z𝑝[𝑥] does 1

2
𝑀1(𝑛) log2 𝑛 + 𝑂(𝑛 log𝑛) arithmetic

operations [2].

We note that a product tree depends on distinct evaluation points, not a polynomial to be evaluated.

Thus once we construct a product tree, we can use it to evaluate other polynomials at the same

points.

Now let𝑚𝑖 = 𝑥 − 𝑢𝑖 for all 0 ≤ 𝑖 ≤ 𝑛 − 1. The remainder of 𝑓 (𝑥) divided𝑚𝑖 , denoted 𝑓 mod𝑚𝑖 is

𝑓 (𝑢𝑖). Recall that if 𝑔|ℎ, then 𝑓 mod 𝑔 = (𝑓 mod ℎ) mod 𝑔 where 𝑓 , 𝑔, ℎ ∈ Z𝑝[𝑥]. Each node 𝑇𝑖, 𝑗 for

0 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 < 2
𝑘−𝑖

in the product tree 𝑇 is a factor of its parent node in 𝑇 . In other words,

𝑇𝑖, 𝑗 = 𝑇𝑖−1,2𝑗 ×𝑇𝑖−1,2𝑗+1 =⇒ 𝑇𝑖−1,2𝑗 |𝑇𝑖, 𝑗 and 𝑇𝑖−1,2𝑗+1 |𝑇𝑖, 𝑗 .
Thus we can compute 𝑓 (𝑢𝑖) for all 0 ≤ 𝑖 ≤ 𝑛 − 1 by dividing down the product tree with a

divide-and-conquer approach.

Theorem 2.5. Dividing down the product tree (DDPT) in Z𝑝[𝑥] does 11

3
𝑀1(𝑛) log2 𝑛 + 𝑂(𝑛 log𝑛)

arithmetic operations.

In the product tree, if deg𝑇𝑖, 𝑗 ≤ 64 we use Horner’s method because it is faster. Then we the space

for 𝑇 for 𝑛 ≥ 64 is 𝑛 (log
2
𝑛 − 4).

3 Fast transposed Vandermonde solver
Kaltofen and Yagati’s algorithm can be derived from Zippel’s algorithm in [9].

3.1 Zippel’s algorithm
From Equation (1), a transposed Vandermonde matrix 𝑈 must have a unique inverse since we

assume every 𝑢𝑖 is distinct. Let𝑈
−1

= (𝑠𝑖, 𝑗)1≤𝑖, 𝑗≤𝑛 . Then we can solve𝑈 a = b by solving a = 𝑈 −1b.
To compute𝑈 −1, Zippel [9] sets 𝑝𝑖 ∈ Z𝑝[𝑥] to be the polynomial 𝑝𝑖 (𝑥) = 𝑠𝑖,1 + 𝑠𝑖,2𝑥 + · · · + 𝑠𝑖,𝑛𝑥𝑛−1

, Vol. 1, No. 1, Article . Publication date: November 2024.

Implementing Kaltofen and Yagati’s fast transposed Vandermonde solver 5

for 1 ≤ 𝑖 ≤ 𝑛. From the fact that 𝑈 −1𝑈 = 𝐼 where 𝐼 is an 𝑛 × 𝑛 identity matrix, each entry 𝐼𝑖, 𝑗 is

computed by multiplying the 𝑖-th row of𝑈 −1 by the 𝑗-th column of𝑈 . Observe that

𝐼𝑖, 𝑗 =
[
𝑠𝑖,1 𝑠𝑖,2 · · · 𝑠𝑖,𝑛

]
1

𝑢 𝑗

.

.

.

𝑢𝑛−1𝑗

= 𝑠𝑖,1 × 1 + 𝑠𝑖,2 × 𝑢 𝑗 + · · · + 𝑠𝑖,𝑛 × 𝑢𝑛−1𝑗 = 𝑝𝑖 (𝑢 𝑗).

Since 𝐼 is the 𝑛 × 𝑛 identity matrix,

𝑝𝑖 (𝑢 𝑗) =

{
1 if 𝑖 = 𝑗

0 otherwise.
(3)

To obtain the polynomials 𝑝𝑖 (𝑥), let𝑀(𝑥) ∈ Z𝑝[𝑥] be a polynomial such that𝑀(𝑥) =
∏𝑛

𝑖=1(𝑥 − 𝑢𝑖).
Zippel calls 𝑀(𝑥) the master polynomial [9]. Let 𝑞𝑖 (𝑥) ∈ Z𝑝[𝑥] of degree 𝑛 − 1 be computed by

𝑞𝑖 (𝑥) = 𝑀(𝑥)/(𝑥 − 𝑢𝑖) =
∏

𝑗 ̸=𝑖 (𝑥 − 𝑢 𝑗) for all 1 ≤ 𝑖 ≤ 𝑛. Then we have{
𝑞𝑖 (𝑢 𝑗) = 0 if 𝑖 ̸= 𝑗

𝑞𝑖 (𝑢 𝑗) ̸= 0 otherwise

Then the coefficients of 𝑝𝑖 (𝑥) can be obtained by computing 𝑝𝑖 (𝑥) = 𝑞𝑖 (𝑢𝑖)
−1 × 𝑞𝑖 (𝑥) for 1 ≤ 𝑖 ≤ 𝑛 to

satisfy the property in Equation (3). Consequently, we can obtain every entry of𝑈 −1. Algorithm
1 shows Zippel’s algorithm from [9]. The cost of the main steps is shown in the right column in

Algorithm 1.

Algorithm 1 Zippel’s transposed Vandermonde solver

Input: 𝑛, u ∈ Z𝑛𝑝 which defines the transposed Vandermonde matrix𝑈 , and b ∈ Z𝑛𝑝
Output: a ∈ Z𝑛𝑝 satisfying𝑈 a = b
1: 𝑀 ← 𝑥 − 𝑢1
2: for 𝑖 from 1 to 𝑛 − 1 do𝑀 ← 𝑀 × (𝑥 − 𝑢𝑖+1) end for //𝑀 =

∏𝑛
𝑖=1(𝑥 − 𝑢𝑖)𝑂(𝑛2)

3: for 𝑖 from 1 to 𝑛 do
4: 𝑞 ← 𝑀/(𝑥 − 𝑢𝑖) . 𝑂(𝑛)

5: 𝑐 ← 𝑞(𝑢𝑖) . 𝑂(𝑛)

6: if 𝑐 = 0 then return ERROR "𝑢𝑖 ’s are not distinct" end if
7: 𝑟 ← 𝑐−1 × 𝑞 // Let 𝑟 =

∑𝑛−1
𝑗=0 𝑟 𝑗𝑥

𝑗
. 𝑂(𝑛)

8: r← [𝑟0, 𝑟1, . . . , 𝑟𝑛−1]
9: 𝑎𝑖 ← Compute the dot product of r · b .𝑂(𝑛)
10: end for
11: return [𝑎1, 𝑎2, . . . , 𝑎𝑛]

Theorem 3.1. Algorithm 1 does 𝑂(𝑛2) arithmetic operations in Z𝑝 [9].

3.2 Kaltofen and Yagati’s algorithm
From Zippel’s algorithm, note that

𝑝𝑖 (𝑥) = 𝑞𝑖 (𝑢𝑖)
−1 × 𝑞𝑖 (𝑥) = 𝑠𝑖,1 + 𝑠𝑖,2𝑥 + · · · + 𝑠𝑖,𝑛𝑥𝑛−1 .

Since a = 𝑈 −1b, 𝑎𝑖 =

∑𝑛
𝑗=1 𝑠𝑖, 𝑗𝑏 𝑗 for 1 ≤ 𝑖 ≤ 𝑛. Kaltofen and Yagati define the polynomial

𝐷(𝑥) ∈ Z𝑝[𝑥] such that

𝐷(𝑥) = 𝑏𝑛𝑥 + 𝑏𝑛−1𝑥
2
+ · · · + 𝑏1𝑥𝑛 .

, Vol. 1, No. 1, Article . Publication date: November 2024.

6 Hyukho Kwon and Michael Monagan

The coefficient of 𝑥𝑛 in 𝑝𝑖 (𝑥) × 𝐷(𝑥) is
∑𝑛

𝑗=1 𝑠𝑖, 𝑗𝑏 𝑗 = 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Then

𝑝𝑖 (𝑥) = 𝑞𝑖 (𝑢𝑖)
−1 × 𝑞𝑖 (𝑥) = 𝑞𝑖 (𝑢𝑖)

−1 × 𝑀(𝑥)

(𝑥 − 𝑢𝑖)
=

𝑀(𝑥)

𝑞𝑖 (𝑢𝑖) × (𝑥 − 𝑢𝑖)
.

This implies that𝑀(𝑥) = 𝑞𝑖 (𝑢𝑖)×(𝑥−𝑢𝑖)×𝑝𝑖 (𝑥). Kaltofen and Yagati define the polynomial𝐻 ∈ Z𝑝[𝑥]
such that

𝐻 (𝑥) = 𝑀(𝑥) × 𝐷(𝑥) = ℎ0𝑥 + ℎ1𝑥
2
+ · · · + ℎ2𝑛−2𝑥2𝑛−1 + ℎ2𝑛−1𝑥2𝑛 .

It follows that 𝐻 (𝑥)/(𝑥 − 𝑢𝑖) = 𝑞𝑖 (𝑢𝑖) × 𝑝𝑖 (𝑥) × 𝐷(𝑥). Thus the coefficient of 𝑥𝑛 in 𝐻 (𝑥)/(𝑥 − 𝑢𝑖) is
𝑞𝑖 (𝑢𝑖) × 𝑎𝑖 . In general, when we compute 𝐻 (𝑥)/(𝑥 − 𝑧), the coefficient of 𝑥𝑖 in the quotient is of the

form 𝑐𝑖 (𝑧) = ℎ𝑖 + ℎ𝑖+1𝑧 + · · · + ℎ2𝑛−1𝑧2𝑛−1−𝑖 and hence the coefficient of 𝑥𝑛 in this quotient is

𝑣(𝑧) = 𝑐𝑛(𝑧) = ℎ𝑛 + ℎ𝑛+1𝑧 + · · · + ℎ2𝑛−1𝑧𝑛−1.
Hence 𝑣(𝑢𝑖) = 𝑞𝑖 (𝑢𝑖) × 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛.

Recall that 𝑞𝑖 (𝑥) = 𝑀(𝑥)/(𝑥 − 𝑢𝑖). The derivative of𝑀(𝑥) can be expressed as

𝑀 ′(𝑥) = (𝑥 − 𝑢𝑖) × 𝑞′𝑖 (𝑥) + (𝑥 − 𝑢𝑖)′ × 𝑞𝑖 (𝑥) = (𝑥 − 𝑢𝑖) × 𝑞′𝑖 (𝑥) + 𝑞𝑖 (𝑥).

By evaluating𝑀 ′ at 𝑢𝑖 we have

𝑀 ′(𝑢𝑖) = (𝑢𝑖 − 𝑢𝑖) × 𝑞′𝑖 (𝑢𝑖) + 𝑞𝑖 (𝑢𝑖) = 𝑞𝑖 (𝑢𝑖).

Hence 𝑎𝑖 = 𝑣(𝑢𝑖)/𝑞𝑖 (𝑢𝑖) = 𝑣(𝑢𝑖)/𝑀
′
(𝑢𝑖) for 1 ≤ 𝑖 ≤ 𝑛. We present Kaltofen and Yagati’s algorithm

from [6] in Algorithm 2. From𝑎𝑖 = 𝑣(𝑢𝑖)/𝑀
′
(𝑢𝑖), we use the product tree to obtain𝑀(𝑥) =

∏𝑛
𝑖=1(𝑥−𝑢𝑖)

in step 2 and to compute 𝑣(𝑢𝑖) in step 6 and𝑀 ′(𝑢𝑖) in step 8 in Algorithm 2.

Algorithm 2 Kaltofen and Yagati’s fast transposed Vandermonde solver (FastTVS)

Input: 𝑛 = 2
𝑘
for some 𝑘 ∈ N, u ∈ Z𝑛𝑝 which defines the transposed Vandermonde matrix 𝑈 , and

b ∈ Z𝑛𝑝
Output: a ∈ Z𝑛𝑝 satisfying𝑈 a = b.
1: 𝑇 ← BuPT(𝑛, 𝑢) .

1

2
𝑀1(𝑛) log2 𝑛 +𝑂(𝑛 log𝑛)

2: 𝑀 ← 𝑇𝑘,0 from 𝑇 //𝑀 =

∏𝑛
𝑖=1(𝑥 − 𝑢𝑖)

3: 𝐷 ← 𝑏𝑛𝑥 + 𝑏𝑛−1𝑥2 + · · · + 𝑏1𝑥𝑛
4: 𝐻 ← 𝑀 × 𝐷 // Let 𝐻 =

∑
2𝑛−1
𝑖=0 ℎ𝑖𝑥

𝑖+1
. .𝑀1(𝑛)

5: 𝑣 ← ∑𝑛−1
𝑖=0 ℎ𝑛+𝑖𝑥

𝑖
//

∑𝑛−1
𝑖=0 ℎ𝑛+𝑖𝑧

𝑖
is the coefficient of 𝑥𝑛 in 𝐻/(𝑥 − 𝑧)

6: 𝑠1, 𝑠2, . . . , 𝑠𝑛 ← DDPT(𝑛, 𝑣 , 𝑇) // 𝑠𝑖 = 𝑣(𝑢𝑖) .
11

3
𝑀1(𝑛) log2 𝑛 +𝑂(𝑛 log𝑛)

7: Differentiate𝑀 .𝑂(𝑛)

8: 𝑡1, 𝑡2, . . . , 𝑡𝑛 ← DDPT(𝑛,𝑀 ′, 𝑇) // 𝑡𝑖 = 𝑀 ′(𝑢𝑖) = 𝑞𝑖 (𝑢𝑖)
11

3
𝑀1(𝑛) log2 𝑛 +𝑂(𝑛 log𝑛)

9: for 𝑖 from 1 to 𝑛 do 𝑎𝑖 ← 𝑡−1𝑖 · 𝑠𝑖 end for .𝑂(𝑛)
10: return [𝑎1, 𝑎2, . . . , 𝑎𝑛]

Theorem 3.2. Algorithm 2 (FastTVS) does at most 53

6
𝑀1(𝑛) log2 𝑛 +𝑂(𝑛 log𝑛) arithmetic operations

in Z𝑝 .

In our implementation of Algorithm 2, for 𝑛 ≤ 64 we evaluate using Horner’s method instead of

dividing down the product tree. Also, if after Step 1 we compute the inverses of all𝑇𝑖, 𝑗 polynomials,

we can use them for both DDPT calls in Steps 6 and 8. Computing intermediate inverses costs

5

3
𝑀1(𝑛) log2 𝑛+𝑂(𝑛 log𝑛). This reduces the cost of each DDPT to 2𝑀1(𝑛) log2 𝑛+𝑂(𝑛 log𝑛) arithmetic

operations. Hence the total cost of Algorithm 2 is reduced to
43

6
𝑀1(𝑛) log2 𝑛 + 𝑂(𝑛 log𝑛). This

optimization reduced the time for 𝑛 = 2
16
in Table 2 from 1500.7 ms to 1249.3 ms.

, Vol. 1, No. 1, Article . Publication date: November 2024.

Implementing Kaltofen and Yagati’s fast transposed Vandermonde solver 7

4 Fast transposed Vandermonde solver over a non-Fourier prime field
Our presented algorithm and analysis of Kaltofen and Yagati’s algorithm assumes that 𝑝 is a Fourier

prime. However, when 𝑝 is not a Fourier prime, we cannot do the polynomial multiplication that

arises in the algorithm using the FFT. In this case, we can apply the three primes method from [8],

which essentially multiplies the cost of fast multiplication, fast division, fast multi-point evaluation

and Kaltofen and Yagati’s algorithm by a factor of three.

Let 𝑎(𝑥) =
∑𝑡

𝑖=1 𝑎𝑖𝑥
𝑒𝑖
where the coefficients are integers. Define | |𝑎 | |∞= max

𝑡
𝑖=1 |𝑎𝑖 | the height of

𝑎(𝑥). Let 𝑓 , 𝑔 ∈ Z𝑝[𝑥] where 𝑝 is not a Fourier prime. Treating the coefficients of 𝑓 and 𝑔 as integers,

since | |𝑓 | |∞< 𝑝 and | |𝑔| |∞< 𝑝 , | |𝑓 ×𝑔| |∞< (𝑝−1)2(1+min(deg(𝑓), deg(𝑓))). To multiply modulo 𝑝 we

choose three distinct Fourier primes 𝑝1, 𝑝2, and 𝑝3 such that 𝑝1𝑝2𝑝3 > (𝑝−1)2(1+min(deg(𝑓), deg(𝑔))).

We use the FFT to multiply 𝑓 × 𝑔 mod 𝑝𝑖 for 𝑖 = 1, 2, 3 and then Chinese remaindering to recover

the integer coefficients in 𝑓 × 𝑔 before reduction mod 𝑝 . In [8], von zur Gathen and Gerhard use

it for multiplying long integers. Fast multiplication with the three primes method is presented in

Algorithm 3.

Algorithm 3 Fast multiplication with three primes (FastMul3p)

Input: Polynomials 𝑓 , 𝑔 ∈ Z𝑝[𝑥] such that 𝑓 =

∑𝑑1
𝑖=0

𝑓𝑖𝑥
𝑖
and 𝑔 =

∑𝑑2
𝑖=0

𝑔𝑖𝑥
𝑖

Output: ℎ = 𝑓 × 𝑔 ∈ Z𝑝[𝑥]
1: Pick three distinct Fourier primes 𝑝1, 𝑝2, 𝑝3 such that 𝑝1𝑝2𝑝3 > (𝑝 − 1)2(1 + min(deg(𝑓), deg(𝑔)))

2: 𝑎 ← Compute (𝑓 mod 𝑝1) × (𝑔 mod 𝑝1) using fast multiplication // Let 𝑎 =

∑𝑑1+𝑑2
𝑖=0

𝑎𝑖𝑥
𝑖

3: 𝑏 ← Compute (𝑓 mod 𝑝2) × (𝑔 mod 𝑝2) using fast multiplication // Let 𝑏 =

∑𝑑1+𝑑2
𝑖=0

𝑏𝑖𝑥
𝑖

4: 𝑐 ← Compute (𝑓 mod 𝑝3) × (𝑔 mod 𝑝3) using fast multiplication // Let 𝑐 =
∑𝑑1+𝑑2

𝑖=0
𝑐𝑖𝑥

𝑖

5: for 𝑖 from 0 to 𝑑1 + 𝑑2 do
6: ℎ𝑖 ← Solve {ℎ𝑖 ≡ 𝑎𝑖 mod 𝑝1, ℎ𝑖 ≡ 𝑏𝑖 mod 𝑝2, ℎ𝑖 ≡ 𝑐𝑖 mod 𝑝3} for 0 ≤ ℎ𝑖 < 𝑝1𝑝2𝑝3
7: ℎ𝑖 ← ℎ𝑖 mod 𝑝

8: end for
9: ℎ ← ∑𝑑1+𝑑2

𝑖=0
ℎ𝑖𝑥

𝑖

10: return ℎ

Theorem 4.1. Algorithm 3 does 𝑀2(𝑛) = 3𝑀1(𝑛) = 3(9𝑛 log
2
𝑛 + 𝑂(𝑛)) = 27𝑛 log

2
𝑛 + 𝑂(𝑛) field

operations to multiply two polynomials of degree at most 𝑛 in Z𝑝[𝑥].

Thus if 𝑝 is not a Fourier prime with 𝑝 = 2
𝑘𝑠 + 1 with 2

𝑘 > 𝑑1 + 𝑑2, the three primes method is used

in every polynomial multiplication in the subroutines in the fast transposed Vandermonde solver.

Theorem 4.2. The fast transposed Vandermonde solver with the three primes method does at most
43

6
𝑀2(𝑛) log2 𝑛 +𝑂(𝑛 log𝑛) = 43

2
𝑀1(𝑛) log2 𝑛 +𝑂(𝑛 log𝑛) field operations.

5 Implementation and Benchmark
We have implemented Kaltofen and Yagati’s algorithm (Algorithm 2 FastTVS) in C for the case

where 𝑝 is a 63 bit Fourier prime.

For comparison we have also implemented Zippel’s 𝑂(𝑛2) algorithm from [9] in C and we have

also implemented Kaltofen and Yagati’s algorithm in Maple. The Maple implementation for mul-

tiplication in Z𝑝[𝑥] is done using a single large integer multiplication using GMP’s fast integer

multiplication.

, Vol. 1, No. 1, Article . Publication date: November 2024.

8 Hyukho Kwon and Michael Monagan

We have also implemented Algorithm 2 with the three primes method where 𝑝 is a 57 bit non

Fourier prime. To use the three primes method, we have used the three Fourier primes: a 32 bit

prime 𝑝1 = 3 · 230 + 1, a 62 bit prime 𝑝2 = 69 · 255 + 1, and another 62 bit prime 𝑝3 = 29 · 257 + 1.

The timings in Table 2 and Table 3 are in milliseconds. They were obtained on an AMD FX 8350-8

8-core CPU at 4.2GHz using one core.

Table 2. CPU timings in𝑚𝑠 for solving 𝑛 × 𝑛 transposed Vandermonde system over Z𝑝 with 𝑝 = 116 · 255 + 1

𝑛
FastTVS Zippel Zippel / Maple Maple /

BuPT InvTree DDPT1 DDPT2 total time FastTVS time FastTVS

2
6

0.046 - 0.046 0.039 0.195 0.1389 0.71 3.4 13.7

2
7

0.086 - 0.107 0.098 0.380 0.4879 1.28 8.6 22.6

2
8

0.150 - 0.254 0.238 0.808 1.9039 2.35 20.8 25.7

2
9

0.363 - 0.693 0.674 2.065 7.4640 3.61 63.0 30.5

2
10

0.875 0.600 1.890 1.877 5.811 30.826 5.30 113.2 19.5

2
11

2.020 2.417 5.070 5.008 15.775 116.84 7.40 270.0 17.1

2
12

4.755 7.529 12.307 12.268 39.444 469.64 11.90 608.0 15.3

2
13

11.146 20.556 29.566 29.270 95.765 1,868.0 19.50 1,321 13.8

2
14

25.901 53.099 71.091 70.580 231.55 7,455.7 32.19 3,025 13.1

2
15

60.151 131.30 166.15 166.46 546.52 29,986 54.86 7,190 13.1

2
16

131.23 314.56 380.02 376.77 1,249.3 120,292 96.28 16,455 13.2

2
17

339.89 746.70 867.30 863.48 2,914.9 478,912 164.3 69,705 23.9

2
18

663.01 1,747.1 1,961.8 1,955.2 6,529.8 1,929,776 295.5 97,667 14.9

Table 3. CPU timings in 𝑚𝑠 for solving 𝑛 × 𝑛 transposed Vandermonde system over Z𝑝 with 𝑝 =

144115188075855859 < 2
57 using the three primes method

𝑛
FastTVS

Zippel

Zippel /

BuPT InvTree DDPT1 DDPT2 total FastTVS

2
6

0.043 - 0.042 0.040 0.247 0.1509 0.61

2
7

0.059 - 0.145 0.144 0.545 0.4869 0.89

2
8

0.276 - 0.343 0.340 1.355 1.9060 1.40

2
9

0.899 - 0.857 0.843 3.463 7.4809 2.16

2
10

2.615 - 2.388 2.398 9.195 29.702 3.23

2
11

6.685 - 7.510 7.374 25.353 116.44 4.59

2
12

16.044 - 25.265 25.139 73.946 470.04 6.35

2
13

38.754 80.014 76.846 76.688 288.00 1865.1 6.47

2
14

93.628 212.80 213.94 214.83 768.44 7478.1 9.73

2
15

214.23 510.61 541.49 540.96 1,875.7 29,763 15.86

2
16

497.72 1,237.4 1,343.2 1,354.4 4,576.6 119,478 26.10

2
17

1,111.9 2,890.1 3,199.1 3,210.3 10,716 488,369 45.57

2
18

2,494.2 6,632.9 7,480.6 7,470.6 24,725 1,953,252 78.99

In Table 2 column BuPT is the time for building the product tree, column InvTree is the time to

construct the inverse product tree, columns DDPT1 and DDPT2 are the time for dividing down

the product tree using the inverse product tree, and column total is total time for Algorithm 2.

Column Zippel is the time for Zippel’s 𝑂(𝑛2) algorithm in C and column Maple is the time for our

, Vol. 1, No. 1, Article . Publication date: November 2024.

Implementing Kaltofen and Yagati’s fast transposed Vandermonde solver 9

Maple implementation of Kaltofen and Yagati’s algorithm. Column Zippel/FastTVS is the speedup

of our FastTVS compared with Zippel and column Maple/FastTVS is the slowdown of the Maple

implementation of Kaltofen and Yagati.

According to Table 2, our FastTVS implementation beats Zippel’s 𝑂(𝑛2) method for 𝑛 ≥ 128 which

is a good result. Also, the Maple time of 69,705 ms for 𝑛 = 2
17
is not an error; it seems to be an

anomaly.

From Table 3, our FastTVS with the three prime method beats Zippel’s quadratic method for 𝑛 ≥ 256

as well. Notice also that the time to build the product tree (BuPT) is much smaller than the time to

compute the inverses (column InvTree) plus divide down the product tree (columns DDPT1 and

DDPT2) in both tables. Thus any improvement will need to focus on polynomial division.

FastTVS, our C implementation of Kaltofen and Yagati, is 13 to 30 times faster than our pure Maple

implementation in Table 2. One reason for this is for 𝑝 = 116 · 255 + 1, which is a Fourier prime, we

do not need the three primes method so we gain a factor of 3 over the Maple implementation. Also,

we compute the inverse product tree once which saves a further 20% of the work.

References
[1] Michael Ben-Or and Prasoon Tiwari: A Deterministic Algorithm for Sparse Multivariate Polynomial Interpolation.

Proceedings of STOC ’20, pp. 301–309, ACM, 1988.

[2] A. Borodin and I. Munro: Evaluating polynomials at many points. Information Processing Letters 1(2): pp. 66–68, 1971.
[3] Tian Chen and Michael Monagan: Factoring Multivariate Polynomials Represented by Black Boxes – A Maple + C

Implementation. Mathematics in Computer Science 16(2–3), article 18, Springer, 2022. https://doi.org/10.1007/s11786-
022-00534-7

[4] Guillaume Hanrot, Michel Quercia, Paul Zimmermann: The Middle Product Algorithm I. Speeding up the division

and square root of power series. Applicable Algebra in Engineering, Communication and Computing 14(6): pp. 415–438,
Springer, 2004.

[5] Jiaxong Hu and Michael Monagan: A fast parallel sparse polynomial GCD algorithm. Proceedings of ISSAC ’2016,
pp. 271–278, ACM, 2016.

[6] Erich Kaltofen and Lakshman Yagati: Improved sparse multivariate polynomial interpolation algorithms. Proceedings
of ISSAC’88, pp. 467–474, Springer, 1988.

[7] Marshall Law and Michael Monagan: A parallel implementation for polynomial multiplication modulo a prime.

Proceedings of PASCO’2015, pp. 78–86, ACM, 2015.

[8] Joachim von zur Gathen and Jüergen Gerhard: Modern Computer Algebra, Cambridge University Press, 2013.

[9] Richard Zippel: Interpolating polynomials from their values. Journal of Symbolic Computation 9(3): pp. 375–403,
Elsevier Ltd, 1990.

Acknowledgments
This work was supported by NSERC of Canada and Maplesoft.

, Vol. 1, No. 1, Article . Publication date: November 2024.

	1 Introduction
	2 Preliminaries
	2.1 Fast multiplication
	2.2 Fast division
	2.3 Fast multi-point evaluation

	3 Fast transposed Vandermonde solver
	3.1 Zippel's algorithm
	3.2 Kaltofen and Yagati's algorithm

	4 Fast transposed Vandermonde solver over a non-Fourier prime field
	5 Implementation and Benchmark
	Acknowledgments

