
MACM 401/MATH 701/MATH 801

Assignment 3, Spring 2017.

Michael Monagan

Due Monday February 27th at 4pm.
Late Penalty: −20% for up to 48 hours late. Zero after that.
For problems involving Maple calculations and Maple programming, you should submit a printout
of a Maple worksheet of your Maple session.

MATH 701 and 801 students should do all questions.
MACM 401 students should do questions 1-3 and either question 4 or 5.

Question 1: The Fast Fourier Transform (30 marks)

(a) Let n = 2m and let ω be a primitive n’th root of unity. To apply the FFT recursively, we use
the fact that ω2 is a primitive m’th root of unity. Prove this.

Also, for p = 97 = 3× 25, find a primitve 8’th root of unity in Zp. Use the method in Section
4.8 which first finds a primitive element 1 < α < p− 1 of Zp.

(b) What is the Fourier Transform for the polynomial a(x) = 1 + x+ x2 + · · ·+ xn−1, i.e. what
is the vector [a(1), a(ω), a(ω2), . . . , a(ωn−1)]?

(c) Let M(n) be the number of multiplications that the FFT does. A naive implementation of
the algorithm would lead to this recurrence:

M(n) = 2M(n/2) + n+ 1 for n > 1

with initial value M(1) = 0. In class we said that if we pre-compute the powers ωi for
0 ≤ i ≤ n/2 and store them in an array W , we can save half the multiplications in the
transform so that

M(n) = 2M(n/2) +
n

2
for n > 1.

By hand, solve this recurrence and show that M(n) = 1
2n log2 n.

(d) Using Maple’s rsolve command, solve the following recurrences. Please simplify the output
from rsolve. T (1) = d, T (n) = 3T (n/2) + cn for n > 1 (Karatsuba), T (1) = 0, T (n) =
2T (n/2) +n/2 for n > 1 (optimized FFT) and T (1) = 0, T (n) = T (n−1) + (n−1)2 for n > 1
(Gaussian elimination).

(e) Program the FFT in Maple as a recursive procedure. Your Maple procedure should take as
input (n,A, p, w) where n is a power of 2, A is an array of size n storing the input coefficients
a0, a1, . . . , an−1, a prime p and w a primitive n’th root of unity in Zp. If you want to precom-
pute an array W = [1, w, w2, . . . , wn/2−1] of the powers of w to save multiplications you may
do so.

Test your procedure on the following input. Let A = [1, 2, 3, 4, 3, 2, 1, 0], p = 97 and w
be the primitive 8’th root of unity. To check that your output B is correct, verify that
FFT (n,B, p, w−1) = nA mod p.
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(f) Let a(x) = −x3 + 3x+ 1 and b(x) = 2x4 − 3x3 − 2x2 + x+ 1 be polynomials in Z97[x].
Calculate the product of c(x) = a(x)b(x) using the FFT.

If you could not get your FFT procedure from part (c) to work, use the following one which
computes [a(1), a(w), . . . , a(wn−1)] using ordinary evaluation.

FT := proc(n,A,p,w)

local f,x,i,C,wi;

f := add(A[i]*x^i, i=0..n-1);

C := Array(0..n-1);

wi := 1;

for i from 0 to n-1 do

C[i] := Eval(f,x=wi) mod p;

wi := wi*w mod p;

od;

return C;

end:

Question 2: The Modular GCD Algorithm (15 marks)

Consider the following pairs of polynomials in Z[x].

a1 = 58x4 − 415x3 − 111x+ 213

b1 = 69x3 − 112x2 + 413x+ 113

a2 = x5 − 111x4 + 112x3 + 8x2 − 888x+ 896

b2 = x5 − 114x4 + 448x3 − 672x2 + 669x− 336

a3 = 396x5 − 36x4 + 3498x3 − 2532x2 + 2844x− 1870

b3 = 156x5 + 69x4 + 1371x3 − 332x2 + 593x− 697

Compute the GCD(ai, bi) via multiple modular mappings and Chinese remaindering. Use primes
p = 23, 29, 31, 37, 43, .... Identify which primes are bad primes, and which are unlucky primes. Use
Gcd(...) mod p to compute a GCD modulo p in Maple and the Maple commands chrem to put
the modular images together, mods to put the coefficients in the symmetric range, and divide for
testing if the calculated GCD gi divides ai and bi, and any others that you need.

PLEASE make sure you input the polynomials correctly!

Question 3: Resultants (15 marks)

(a) Calculate the resultant of A = 3x2 + 3 and B = (x− 2)(x+ 5) by hand.

(b) Let A,B,C be non-constant polynomials in R[x].
Show that res(A,BC) = res(A,B) · res(A,C).

(c) LetA,B be two non-zero polynomials in Z[x]. LetA = GĀ andB = GB̄ whereG = gcd(A,B).
Recall that a prime p in the modular gcd algorithm is unlucky iff p|R where R = res(Ā, B̄) ∈ Z.
Consider the following pair of polynomials from question 4.

Ā = 58x4 − 415x3 − 111x+ 213
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B̄ = 69x3 − 112x2 + 413x+ 113

Using Maple, compute the resultant R and identify all unlucky primes. For each unlucky
prime p compute the gcd of the polynomials Ā and B̄ modulo p to verify that the primes are
indeed unlucky.

Question 4: The Schwartz-Zippel Lemma (15 marks)

Let D be an integral domain and let S ⊂ D. Let f be a non-zero polynomial in D[x1, x2, . . . , xn].
If α1, α2, . . . , αn are chosen at random from S then

Prob[f(α1, α2, . . . , αn) = 0] ≤ deg f

|S|
.

Prove the Lemma by induction on n the number of variables.
Note, deg f is the total degree of f .

Question 5: The Chinese remainder theorem in F [y] (15 marks).

Consider the problem of computing GCDs in Zq[y][x], q a prime. If q is large then we can use
evaluation and interpolation for y, i.e., we can evaluate at y = 0, 1, 2, ... and interpolate the coeffi-
cients of the GCD in Zq[y]. If q is small, e.g. q = 2, this will not work as there will be insufficient
evaluation points in Zq. Moreover, y = 0 and y = 1 may be bad or unlucky.

But Zq[y] is a Euclidean domain and there are an infinite number of primes (irreducibles) in
Zq[y] which can play the role of integer primes in the modular GCD algorithm for computing GCDs
in Z[x]. For example, here are the irreducibles in Z2[y] up to degree 4.

y, y + 1, y2 + y + 1, y3 + y + 1, y3 + y2 + 1, y4 + y + 1, y4 + y3 + 1, y4 + y3 + y2 + y + 1.

To do this we need to solve the Chinese remainder problem in Zq[y].

Theorem: Let F be any field (e.g. Zq) and let m1,m2, . . . ,mn and u1, u2, . . . , un be polyno-
mials in F [y] with deg(mi) > 0 for 1 ≤ i ≤ n. If gcd(mi,mj) = 1 for 1 ≤ i < j ≤ n then there
exists a unique polynomial u in F [y] s.t.

(i) u ≡ ui (mod mi) for 1 ≤ i ≤ n and
(ii) u = 0 or deg u <

∑n
i=1 degmi.

Prove the theorem by modifying the proof of the Chinese remainder theorem for Z to work for
F [y]. Now solve the following Chinese remainder problem: find u ∈ Z2[y] such that

u ≡ y2 (mod y3 + y + 1) and u ≡ y2 + y + 1 (mod y3 + y2 + 1).

Note, in the statement of the theorem the congruence relation u ≡ ui (mod mi) means mi|(u− ui)
in F [y]. For the extended Euclidean algorithm in Zq[y], use Maple’s Gcdex(...) mod q command
to compute the required inverse.
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