MATH 152 Assignment 1, Fall 2019.

Michael Monagan

WebAssign exercises: Due 10pm Tuesday September 17th

- 5.1 Exercises 15, 24, 26
- 5.2 Exercises 21, 34, 36, 43, 49
- 5.3 Exercises 3, 9, 27, 55
- 5.4 Exercises 8, 11, 25, 28, 51
- 5.5 Exercises 1, 4, 44, 71, 88

Written exercises: Due 10pm Wednesday September 18th

- 1 Differentiate the following functions of x: (a) $3x^2 + 2x^{-1}$, (b) $\ln(1-x^2) + xe^{-2x}$, (c) $\frac{\ln x}{x^2}$, (d) $3\sin(2x) - \sqrt{x}\cos x$.
- 2 (Section 5.1) Exercise 5(a) and 5(b).
- 3 (Section 5.2) Calculate $\int_0^2 \frac{1}{1+x} dx$ using the midpoint rule with n = 4 intervals. Give the answer as an exact fraction.
- 4 (Section 5.2) Let $f(x) = x^2$ on [0, 1]. If we use the midpoint rule M_n with n subintervals of width $\Delta x = 1/n$ so that

$$M_n = \sum_{i=1}^n \Delta x f(\frac{(i-1)\Delta x + i\Delta x}{2}) = \sum_{i=1}^n \frac{1}{n} \frac{(i/n - 1/n + i/n)^2}{4}$$

show that $\lim_{n \to \infty} M_n = \frac{1}{3}$.

- 5 (Section 5.3) Evaluate $\int_{1}^{9} \frac{3}{\sqrt{z}} dz$ using the Fundamental Theorem of Calculus.
- 6 (Section 5.3) Show that $\int_a^b f(x)g(x)dx \neq \int_a^b f(x)dx \int_a^b g(x)dx$ in general. Hint: Consider $\int_0^1 x(1-x)dx$.
- 7 (Section 5.4) Show that $\int \cos(x)^2 dx = \frac{1}{2}x + \frac{1}{4}\sin 2x + C$ by differentiating both sides and using the trig identities $\sin 2A = 2\sin A \cos A$ and $\cos 2A = 2\cos(A)^2 1$.
- 8 (Section 5.4) Water flows out of a storage tank at a rate of r(t) = 100 10t litres per minute. Find the amount of water that flows out of the tank during $0 \le t \le 10$.
- 9 (Section 5.5) Exercise 79: show that the first area equals the second area.