Rational Number Reconstruction (Paul Wang 1981) September 28, 2023 8:44 AM Suppose The Q, note Z and dro, gcd(n, d)= (. Suppose we have computed u = n/d mod m was osuch and gcd(m,d)=1. [Context : M=PIPZPZ....Pr or M=Pr] How can we recover $\frac{n}{d}$ from $u \mod m$? $\frac{-2}{3}$? E.g. M=35, $\frac{n}{d}=\frac{-2}{3}$ $u=-2\cdot 12=-24=+1$ moel 35. How big does m need to be to recover had? (an we recover $\frac{114}{109}$ from $\frac{114}{109}$ mod 35 = 11 mod 35. No We nod M>21n1.d. Run Ext. Euc. Alg. with mput mou >0. We will obtain integers size, ve satisfying Si-M+ti·U=r: for OLIENH WZee M+1=0. (mod m) => tind = i mod m. 2≠0 2≠ N+1 to=0 tN+1=M If $gcd(ti,m)=1 \Rightarrow u \equiv rimod m$. i.e., he EEA gives us a sequence of rationals $\frac{f_i}{f_i} \equiv u \mod n$ for IsisN. Is in = i for some i? Yes provided M>2/n/d. Which one? Theorem (Eng, Davenport, Wang) 1982. Let n, d e Z, d>0, gcd(n, d)=1. and and mal-1 1~-

Let n, d $\in \mathbb{Z}$, d > 0, gcd(n, d) = 1. Let $m \in \mathbb{Z}$, m > 0, gcd(m, d) = 1. Let $u = \bigoplus_{n \in \mathbb{Z}} \mod m$ with $o \leq u < m$. Let $N \geq |n|$ and $D \geq d$. Then (i) $T = m \geq 2ND$ then $\bigotimes_{m} (\bigoplus_{n}) i$ one to one. $E \cdot g \cdot \mathbb{Z}_{13} = \bigcap_{1=1}^{n-1} -\bigcap_{1=1}^{2} -\bigcap_{2=1}^{2} -\sum_{1=1}^{2} -\sum_{2=1}^{2} -\sum_{1=1}^{2} -\sum_{2=1}^{2} -\sum_{1=1}^{2} -\sum_{2=1}^{2} -\sum_{2=1$

(ii) If my END they an input of m,u there exists a unique index i in the EEA s.t. Fi = I.
Moreover i is the first index s.t. Fi < N.

If we have good bounds NZINI and DZd then we compute M=pR>ZND and run RR.

Consider $A \times = b$ k=1 is sufficient $\rightarrow \left[\begin{array}{c} & & \\ & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \\ & & \end{array} \right] \left[\begin{array}{c} & & \\ & & \\ & & \end{array} \right] = \left[\begin{array}{c} & & \\ & & \\ & & \end{array} \right]$

Wang: Set N=D=L= J and try RR. If it succeeds chech: if Ax=b the output x.