Adjugates and Characteristic Polynomials

Assicing agent #2 due next Tuesday @ 11pm

Assignment the can use next including of the next including of the power moved to the indiced.
Monday office how moved to the indiced.
Let R be a commute det(A) and det(A-XI)?
The adjugate matrix (adjoint) adj(A).
Let A =
$$\begin{bmatrix} a & b \\ c & a \end{bmatrix}$$
. $A^{-1} = \frac{1}{ad-bc} \cdot \begin{bmatrix} cd & -b \\ -c & a \end{bmatrix} = det(A)^{-1} adj(A)$.
Def. Let \overline{A}_{ij} denote the intime submatrix of A obtained
by detering row is and column j. Let $C = cof(A)$ usee
 $C_{ij} = (-1)^{i+1}$. $det(A_{ij})$. Define $ad_{j}(A) = CT$.
E.g. $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. $C_{12} = (-1)^{i+1}$. $det(CdT) = d$.
 $C_{21} = (-1)^{2+1}$. $det(A_{ij}) = -b$
 $C_{22} = (-1)^{2+1}$. $det(EdT) = -b$
 $C_{22} = (-1)^{2+1}$. $det(B) = -b$
 $C_{22} = (-1)^{2+2}$. $det(A) = a$.
 $C = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$ $ad_{j}(A) = \begin{bmatrix} d - b \\ -c & a \end{bmatrix}$.
Properties of γ $ad_{j}(A)$.
 \bigcirc $ad_{j}(AB) = ad_{j}(B) = det(A)$. A^{-1}
 $Proof \bigcirc using (2) $aod_{j}(AB) = det(AB) \cdot (AB)^{-7}$
 R is commutative $= det(A)(det(B) \cdot B^{-7}A^{-1})$
 $aud det(A), det(B) \in R$
 $A = \begin{bmatrix} de + (B) \cdot B^{-1}A^{-1} \\ aud det(A), det(B) \in R \end{bmatrix} \Rightarrow A \times j = Ej$. Apply Cremer's rule
 $A \times = I$ for X , i.e.,
 $A \begin{bmatrix} d_{1}, \dots, d_{n} \\ 1 \end{bmatrix} = \begin{bmatrix} e_{1}, \dots, e_{n} \\ 1 \end{bmatrix} \Rightarrow A \times j = Ej$. Apply Cremer's rule
Let $A^{(1)} = \begin{bmatrix} a_{1}, \dots, b_{n} \\ 1 \end{bmatrix} \xrightarrow{T_{1}} = \frac{det(A(A))}{det(A)}$$

$$\begin{array}{c} \left(\begin{array}{c} 1 & 1 \end{array} \right) \quad \text{rowing} \quad \text$$

$$\begin{aligned} adj(Ar - \lambda \perp 1) &= k = i = 0 \text{ for } r^{-1}, \\ Ar = \begin{pmatrix} c & b \\ c & d \end{pmatrix}^{-1} \\ adj(\begin{bmatrix} a \\ c \end{pmatrix}^{-1} b \\ d + \lambda \end{bmatrix}) = \begin{bmatrix} d \\ -c & a \end{pmatrix}^{-1} = \begin{bmatrix} d \\ -c & a \end{bmatrix}^{-1} \begin{bmatrix} c & b \\ -c & a \end{bmatrix} + \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ R = \begin{bmatrix} -a - d & 0 \\ -c & a \end{bmatrix}^{-1} \begin{bmatrix} c & b \\ c & d \end{bmatrix} - \begin{bmatrix} c & b \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -a - d & 0 \\ -c & a \end{bmatrix}^{-1} \begin{bmatrix} c & b \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -a - d & 0 \\ -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & 0 \\ 0 & -1 \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & a \end{bmatrix}^{-1}, \\ = \begin{bmatrix} -c & a \end{bmatrix}^{-1} \begin{bmatrix} -i & a \end{bmatrix}^{-1}, \\ = \begin{bmatrix}$$