A1Q3 Solution, Copyright Michael Monagan

(a) Using
$$|xy| = |x||y|$$
 for all $x,y \in \mathbb{R}$ we have.
(i) $|cf(n)| \leq |c||f(n)|$ for all $n \geq 1 \Rightarrow cf(n) \in O(f(n))$
(ii) $|f(n)| \leq \frac{1}{|c|}|cf(n)|$ for all $n \geq 1 \Rightarrow f(n) \in O(cf(n))$
Therefore $O(cf(n)) = O(f(n))$ for $c > 0$.
Note the result and proof hold for $c < 0$ but not $c=0$.
(b) Show That $O(\log_{a}n) = O(\log_{b}n)$.
 $\log_{a}n = \frac{1}{\ln a} \cdot \ln n \Rightarrow O(\log_{a}n) = O(\frac{\ln n}{\ln a}) = O(\ln n)$ by part (a).
 $\log_{b}n = \frac{1}{\ln b} \cdot \ln n \Rightarrow O(\log_{b}n) = O(\frac{\ln n}{\ln b}) = O(\ln n)$ by part (a).
Therefore $O(\log_{a}n) = O(\log_{b}n)$.
(c) (i) $2nO(2n+i) = O(4n^{2}+2n) = O(4n^{2}) = O(n^{2})$.
(ii) $O(2(n+i)^{2}+3n) = O(2n^{2}+4n+2+3n) = O(n^{2})$.
(iii) $O(n^{2}) + nO(n^{2}/3) = O(n^{2}) + O(n^{3}/3) = O(n^{2}) + O(n^{3})$.
(iv) $O(2^{n}+N^{3}) = O(2^{n})$ since $2^{n} > i \cdot n^{3} \neq n \ge 10$.

•