- (a) We are given w is a p.n.r.u. so W=(and $W^i \neq ($ for ocicn. A(so N=2m. So $W^2/M=W^2M=W^n=1$.

 Suppose W^2 is not a p.m.r.u. Then $\exists i$ s.t. $(W^2)^i=($ for ocicn. \Rightarrow $W^2i=($ But $2i< n \Rightarrow W$ is not a p.n.r.u. \boxtimes .
- (b). (i). The Fourier transform of $a(x) = x^4c$ is $[a(wi): oxicn] = [(wi)^4c = (w^7)^4c : oxicc]$ = [1+c: oxicn].
 - (ii) For $a(x) = 1+x+x^2+...+x^{N-1}$ Now $a(w^0) = a(1) = N$. Note that $\frac{1-x^n}{1-x} = 1+x+x^2+...+x^{N-1} = a(x)$ So for $i \neq 0$, $a(w^i) = \frac{1-(w^i)^n}{1-w^i} = \frac{1-(w^n)^n}{1-w^n} = 0$. So the Fourier transform is [n, 0, 0, ..., 0].