I think the cleanest proofs are by contradiction. (a) Prove \langle is a well ardering \Longleftrightarrow 1 is ta least monomial in \langle . \Rightarrow Suppone \lt is a well ardering. TAC suppose $12x^2$ for some $\alpha \in \mathbb{Z}_{>0}$. Then $X^{\alpha} > X^{\alpha}X^{\alpha} = X^{2\alpha}$ by (ii). And x^{α} . x^{α} $>$ x^{α} . $x^{2\alpha}$ by (ii) $\Rightarrow x^{2\alpha} > x^{3\alpha}$. We have $| \frac{1}{2} \times \alpha \frac{1}{2} \times \alpha \frac{1}{2} \times \alpha \frac{3}{2} \times \alpha \frac{3}{2}$ We have $12x^{\alpha}$
 $3x^{\alpha}$
 $3x^{\alpha}$
 $4x$
 $5x^{\alpha}$
 $6x^{\alpha}$
 $6x^{\alpha}$
 $6x^{\alpha}$
 $6x^{\alpha}$
 $6x^{\alpha}$
 $6x^{\alpha}$ contradicting every subset of monumials has a least element. (\Rightarrow) Another proof. Support \prec is a well ardering. Then $S = Z_{\geqslant 0}$ has a least element say \propto . So $x^{\alpha} \leq x^{\beta}$ for all $\beta \in \mathbb{Z}_{>0}$. Suppose $X^{\alpha} \neq \alpha \Rightarrow X^{\alpha} < \alpha \Rightarrow X^{\alpha} (X^{\alpha}) < X^{\alpha}$ by (ii) $\Rightarrow x^{2\alpha} < x^{\alpha}$ \boxtimes \mathcal{S}_0 1 is the smallest element of $\mathbb{Z}_{7,0}$. (\Leftarrow) Suppone I is the least monomial. Let S be a subset of \mathbb{Z}_2^n , $S \neq 53$. Let $I = \langle x^{\alpha} : \alpha \in S \rangle$
Dickson's Lemma => $I = \langle x^{\alpha(1)}, x^{\alpha(2)}, ..., x^{\alpha(s)} \rangle$ for some $S \in \mathbb{N}$. [Doesn't Dickson's Lemma's proon assume a well ardering?] WLOG supper $X^{\alpha(1)}< x^{\alpha(2)}<...< x^{\alpha(2)}$ $Clain \times ^{d(t)}$ is the least element of S.

TAC suppose $x^{\beta} \in S$ with $x^{\beta} \leq x^{\alpha(1)}$ \in $\Rightarrow x^{\beta} \in I \Rightarrow x^{\alpha(i)} | x^{\beta} \text{ for some } i \in i \subseteq S.$ If $I = \frac{1}{2}$ is the base $X^{\alpha(1)} \mid X^{\beta} \Rightarrow X^{\alpha(2)} \leq X^{\beta}$ If is I we have $x^{d(i)} < x^{d(i)} \leq x^{\beta}$ $\overline{\bowtie}$

Let S be a subset
$$
4
$$
 2₃₀, $5 \neq 6$.
\nIf $0 \in S$ then sine $0 \le \alpha$, 5 has a least element 0.
\nIf $0 \notin S$ then consist $0 \le \alpha$, 5 has a least element 0.
\nS' has a least element $.0$ and > 3 a total ardeixy. So
\n 3 $\beta \in S$ s.t. $0 < \beta < \alpha$ in S' for all $\alpha \in S \setminus \{0\}$.
\nHence $\beta \in S'$ is α but least element in S.
\nThus > 3 a well ordering.

(b)
$$
\frac{2(x - 4x + 4)^2 - 9}{(x - 2)^2}
$$

\n $\frac{4}{1} = x + 4^{2} - 1$
\n $\frac{4}{1} = x - 4^{2} - 1$
\n

>grlex with xxy

$$
f_{1}=y^{2}+x-1
$$

\n $f_{2}=\frac{a_{2}=1}{x^{2}+2x-1}$
\n $f_{3}=\frac{a_{3}=1}{x^{3}+2x-1}=-\frac{a_{3}+2x-1}{x-2x-1}$
\n $f_{4}=\frac{a_{4}-a_{5}}{x-2a-1}$
\n $f_{5}=\frac{a_{4}-a_{5}}{x-2a-1}$
\n $f_{6}=\frac{a_{6}+a_{7}}{x^{2}+x^{2}+1}$